

12 Years of ablative fractional CO₂ laser Practice: Logistics, lessons and evolving model of care

Natalia Ziolkowski ^{a,b,c,*}, Fiona M. Wood ^{a,d,e} , Suzanne Rea ^{a,d,e}, Inge Spronk ^f , Dale W. Edgar ^{a,d,e,g} , Helen Douglas ^{a,d,**}

^a State Adult Burn Unit, Fiona Stanley Hospital, South Metropolitan Health Service, Murdoch, Western Australia, Australia

^b Department of Surgery, McMaster University, Canada

^c Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada

^d Burn Injury Research Unit, Faculty of Medicine and Dentistry, University of Western Australia, Crawley, Western Australia, Australia

^e Fiona Wood Foundation, Murdoch, Western Australia, Australia

^f Dutch Burns Foundation, Beverwijk, the Netherlands

^g Institute for Health Research, Burn Injury Research Node, The University of Notre Dame Australia, Fremantle, Western Australia, Australia

ARTICLE INFO

Keywords:

Burn scar

Hypertrophic scar

Laser treatment

Ablative fractional carbon dioxide laser

ABSTRACT

Introduction: Ablative fractional CO₂ lasers (AFCO₂L) have been shown to improve burn hypertrophic scars significantly. In this paper we describe the journey of setting up the laser service for burns patients, considerations in patient selection, treatment algorithms, and lessons learned.

Methods: This study is a retrospective cohort study including all patients who received AFCO₂L at the Western Australian (WA) Statewide Adult Burn Unit since the start of the program in 2013–2024. Descriptive statistics present the number, timing and settings of AFCO₂L events, as well as patient, injury, and treatment characteristics. Further, the profile of patients who underwent laser treatment was compared to those who did not, during the study period.

Results: Since the introduction of the AFCO₂L, a total of 4005 laser sessions involving 837 burns patients has been completed in WA. The majority were performed as an outpatient (66 %), with the proportion and total numbers increasing with time to 2021. Compared to those not receiving laser for their scars, AFCO₂L was more likely applied to younger ($p < 0.0001$), female ($p < 0.0001$) patients with higher %TBSA burns ($p < 0.0001$) involving multiple anatomic areas ($p = 0.001$), more often requiring surgery ($p < 0.0001$) and longer times to heal ($p < 0.0001$). In 2013, 100 % of all lasers were provided as an inpatient, under general anesthetic with an average age of scar > 5000 days. By 2023/4, only 18 % required an inpatient stay and the average age of scar was 111 days.

Conclusions: The SABU team evolved AFCO₂L therapy into the model of care over time to achieve earlier, more equitable delivery of laser treatments to 80 % of patients as outpatients, supported by extensive multidisciplinary team involvement.

1. Introduction

Laser therapy, specifically, ablative fractional CO₂ lasers (AFCO₂L) has been shown to effectively improve hypertrophic burn scars (HBS) [1–5]. AFCO₂L improves scar function (softness, pliability) and stiffness, symptoms (pruritus), and aesthetic concerns [6–12].

The AFCO₂L was first introduced in the Western Australian (WA) State-wide Adult Burn Unit (SABU) for the treatment of HBS in 2013; the first not only in Australia but the whole Southern Hemisphere.

Information gathered in the first few years of treating burn patients with lasers has created a paradigm shift in how we approach the treatment of scars [3,4]. How we view the reconstructive ladder (or elevator) has changed with the addition of this modality to our reconstructive toolbox. This work represents the largest dataset for AFCO₂L in HBS in adult burn survivors in Australia.

Currently, there are few resources that describe the logistics and evolution of setting up a laser service; or, which patients to treat, when, and how. Hultman et al. [13] described how to create a laser practice by

* Corresponding author at: Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada

** Corresponding author at: State Adult Burn Unit, Fiona Stanley Hospital, Australia

E-mail addresses: ziolkowski@hhsc.ca (N. Ziolkowski), Helen.Douglas@health.wa.gov.au (H. Douglas).

focusing on the aspects that are needed to create one. This study amalgamates our twelve years of clinical practice data, combined with reflections on aspects of service development. The aim of this retrospective review was to present our change in practice and lessons learned, to inform other laser clinicians of the practical and clinical aspects that we have found helpful. In this report, we describe the journey of setting up the laser service for burns patients, considerations in patient selection, treatment algorithms, and lessons learned. The results may assist to reduce variation in practice and lead to a more evidence-based service.

2. Materials and methods

2.1. Study design and approval

This study is a retrospective cohort study including all patients who received laser therapy from the start of the WA program from January 1, 2013 to April 30, 2024. It was approved by South Metropolitan Health Service (SMHS) Human Research and Ethics Committee (HREC), as a sub-project (value-based health care studies [14]) of the long-term registry study (RGS0000002233).

2.2. Patient Population

All adult patients (16 years and above) who had a burn scar treated with AFCO₂L as an outpatient or inpatient, were included in this study.

2.3. Preprocedural care

All patients undergo a standardized consent process, supported by an information package. Consent includes the risks of infection, pigmentation changes, dissatisfaction with the resulting treatment, post-procedural pain, and prolonged wound healing. Patient's scars are recorded at baseline and over time through standardized photographs and comprehensive occupational therapy assessments including POSAS and modified VSS [15]. Patients undergoing outpatient AFCO₂L will be given EMLA to apply to their treatment area and cling film at home approximately one hour before their treatment appointment.

2.4. Laser settings

The laser used is a AFCO₂L (Ultrapulse, Lumenis Corporation, Santa Clara, CA). Laser settings used depend on the goal of therapy. To decrease scar height, improve pliability, and decrease itch, the SCAARFx and DeepFX settings are used. SCAARFx is commonly used for scars of greater than 2 mm in height (80–120 mJ, 250 Hz, 3 % density). DeepFX is commonly used for scars less than 2 mm in height or flat scars that are pruritic or tight (30–50 mJ, 300 Hz, 5 % density).

2.5. Postoperative care

A silicone dressing is applied post-treatment and stays intact for 48 h after which the patient removes it. Patients then apply a topical steroid ointment (1 % hydrocortisone acetate) twice a day for two weeks to hydrate the scar, assist in steroid delivery, and reduce risks of post-inflammatory hyperpigmentation.

2.6. Resources

Requirements for laser licenses and qualification of laser operators differs between states in Australia and internationally. In WA, AFCO₂L is a class IV laser requiring delivery by a licensed doctor and presence of a laser safety officer (generally a nurse). Personal protective equipment ('PPE') required includes laser safety googles and N95 masks to prevent inhalation of laser plume. Appropriate signage outside the laser room is essential to prevent accidental walk-ins by individuals not wearing

appropriate PPE. Patient-specific PPE includes eye protection as well as wet gauze around the ETT for intubated patients to minimize fire risk.

2.7. Multidisciplinary team and timing

Follow-up for all burns patients occurs in a routine manner (generally at 6 weeks, 3-, 6-, and 12- months post-burn injury). The team consists of surgeons, nurses, and occupational therapists and physiotherapists. Patients are assessed pre-laser as well as after one (1) laser cycle which consists of three (3) laser sessions.

2.8. Data analyses

Descriptive statistics were used to assess the number and timing of AFCO₂L, as well as patient, injury, and treatment characteristics. Patients who underwent laser treatment were compared to those who did not receive AFCO₂L. Continuous variables were analyzed using Mann-Whitney U-tests, while categorical variables were compared using chi-square tests.

The acute burn time to healing was defined as the number of days between injury and at least 95 % healing, as recorded in the electronic medical record. The mean time (days) between injury and first laser treatment and the number of lasers received was calculated for each year our service was in operation. Patient, injury, and treatment characteristics were compared between those who received laser within ≤ 18 months post-burn and those treated > 18 months post-burn as a marker of immature and mature burns. Furthermore, the number of laser treatments per %TBSA burned was analyzed.

Predictive factors of receiving laser therapy were analysed using univariate and multivariate analyses. Factors with a significance level of $p < 0.20$ in univariate analyses were checked for collinearity (> 0.8 or < -0.8) and entered the generalized linear model. The level of significance was set at $p < 0.05$. Regression coefficients and the corresponding standard errors (SE) were reported.

3. Results

3.1. Patient Demographics

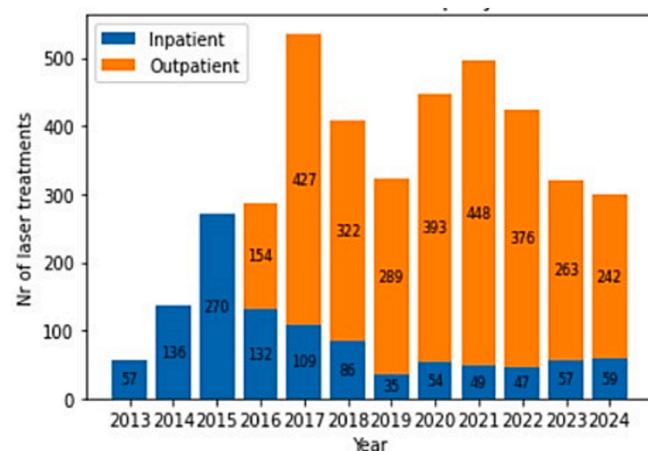
The WA patients, who were burn injured in 2002 or after, and received AFCO₂L therapy for their scars, were more likely to be female (54 %) with a median age of 31 (21–45) with no recorded comorbidities (82 %) (Table 1). The majority lived in the metro region (74 %) and were Fitzpatrick 2 (fair) skin type (46 %). The median % TBSA burned was 2.5 (0.9–9.6) with scald being the most common mechanism of injury (22 %). Most laser patients had received a skin graft (48 %) with burns to multiple anatomic locations (44 %). The median time to 95 % healing was 22 days (IQR of 15–35 days).

3.2. Patient setting

Sixty-six percent (66 %) of all lasers were performed as an outpatient. In 2013, 100 % of all lasers were provided as an inpatient setting ($n = 17$) in comparison to only 57 (18 %) outpatients in 2023 (Fig. 1, Supp Table A). It was three years (276 patients) before laser therapy was available as an outpatient. Once outpatient laser was introduced in 2016, this rapidly became our preferred treatment setting (Fig. 1).

3.3. Factors associated with receiving laser treatment

Patient characteristics predisposing patients to receiving laser therapy were younger age ($p < 0.0001$), female gender ($p < 0.0001$), higher TBSA percentage ($p < 0.0001$), multiple anatomic areas affected ($p = 0.001$), longer time to wound healing ($p < 0.0001$), and surgery ($p < 0.0001$). A patient was less likely to receive laser treatment if the burn was on the head ($p = 0.024$), hand ($p < 0.0001$), or leg ($p < 0.0001$); an


Table 1

Demographics of patients who underwent AFCO₂L treatment, compared to all others who were treated by the SABU team (2013–2024).

Variable (Median (IQR) unless otherwise stated)	Laser (n = 837)	No laser (n = 5351)	p-value*
Gender: male [n(%)]	383 (45.8 %)	3641 (68.0 %)	<0.001
Age	31.0 (21.0–45.0)	38.0 (26.0–53.0)	<0.001
Comorbidities [n(%)]	690 (82.4 %)	4426 (82.7 %)	0.718
No comorbidity	71 (8.5 %)	479 (9.0 %)	
One comorbidity	76 (9.1 %)	446 (8.3 %)	
Two or more comorbidities			
%TBSA burned	2.5 (0.9–9.6)	1.4 (0.5–3.7)	<0.001
%TBSA burned	191 (22.8 %)	2114 (39.5 %)	<0.001
<=1%	189 (22.6 %)	1770 (33.1 %)	
>1–5 %	75 (9.0 %)	472 (8.8 %)	
>5–10 %	66 (7.9 %)	196 (3.7 %)	
>10–20 %	76 (9.1 %)	82 (1.5 %)	
>20 %	240 (28.7 %)	717 (13.4 %)	
Unrecorded			
%TBSA full thickness	0.0 (0.0–0.0)	0.0 (0.0–0.0)	<0.001
Length of hospital stay (days)	5.0 (1.0–12.0)	3.0 (1.0–7.0)	<0.001
Surgery events	1.0 (0.0–1.0)	1.0 (0.0–1.0)	<0.001
Grafting event count [n(%)]	270 (32.3 %)	2408 (45.0 %)	<0.001
No grafts	402 (48.0 %)	2669 (49.9 %)	
One grafts	165 (19.7 %)	274 (5.1 %)	
Two or more grafts			
Intensive care unit admission [n(%)]	75 (9.0 %)	140 (2.6 %)	<0.001
Mechanical ventilation [n(%)]	56 (6.7 %)	102 (1.9 %)	<0.001
Agent [n(%)]	29 (3.5 %)	312 (5.8 %)	<0.001
Chemical	77 (9.2 %)	926 (17.3 %)	
Contact	5 (0.6 %)	35 (0.7 %)	
Cooling	5 (0.6 %)	48 (0.9 %)	
Electrical	49 (5.9 %)	381 (7.1 %)	
Explosion/Flash	162 (19.4 %)	1125 (21.0 %)	
Flame	22 (2.6 %)	139 (2.6 %)	
Friction	1 (0.1 %)	2 (0.0 %)	
Hot gas	8 (1.0 %)	89 (1.7 %)	
Radiant heat	187 (22.3 %)	1431 (26.7 %)	
Scald	0 (0.0 %)	43 (0.8 %)	
Sunburn	292 (34.9 %)	820 (15.3 %)	
Unrecorded			
Time to healing (days)	22.0 (15.0–35.0)	15.0 (6.0–20.0)	<0.001
Skin type [n(%)]	65 (7.8 %)	360 (6.7 %)	<0.001
Type 1 Pale white skin	387 (46.2 %)	2919 (54.6 %)	
Type 2 Fair skin	128 (15.3 %)	901 (16.8 %)	
Type 3 Darker white / Light brown skin	120 (14.3 %)	612 (11.4 %)	
Type 4 Medium brown skin	65 (7.8 %)	311 (5.8 %)	
Type 5 Rich brown skin	40 (4.8 %)	176 (3.3 %)	
Type 6 Very dark brown / black skin	32 (3.8 %)	72 (1.3 %)	
Unrecorded			
Anatomic Area Burned [n(%)]	302 (36.1 %)	1475 (27.6 %)	<0.001
Arm	58 (6.9 %)	268 (5.0 %)	<0.001
Buttock	129 (15.4 %)	988 (18.5 %)	0.908
Foot	255 (30.5 %)	1517 (28.3 %)	<0.001
Hand	167 (20.0 %)	850 (15.9 %)	<0.001
Head	295 (35.2 %)	1948 (36.4 %)	<0.001
Leg	231 (27.6 %)	1008 (18.8 %)	<0.001
Trunk	367 (43.8 %)	1999 (37.4 %)	<0.001
Multiple locations			
Location patient living [n(%)]	621 (74.2 %)	3611 (67.5 %)	<0.001
Metro	58 (6.9 %)	498 (9.3 %)	
Remote	133 (15.9 %)	993 (18.6 %)	
Rural	25 (3.0 %)	249 (4.7 %)	
Unrecorded			

* p-values in bold are statistically significant at $p < 0.05$.

accident at work ($p = 0.004$), motor vehicle accident ($p = 0.008$), or self-harm ($p = 0.002$); and rural or remote living ($p < 0.0001$) (Table 1). Increased odds of AFCO₂L therapy were also associated with increased median occupational therapy, physiotherapy, clinical psychology, and dietetics treatment occasions (all $p < 0.001$) (Table 2).

Fig. 1. Proportion of cases receiving AFCO₂L in inpatient or outpatient settings, by year.

Table 2

Median allied health occasions of service, comparing those who received and did not receive AFCO₂L therapy, in addition to routine care.

Allied Health Discipline	Occurrences of service [median (IQR)]	Laser	No laser	p-value*
Dietetics	3.1 (0.0–1.0)	0.8 (0.0–0.0)		<0.001
Occupational therapy	18.7 (1.0–17.0)	5.1 (0.0–7.0)		<0.001
Physiotherapy	31.1 (1.0–24.8)	10.1 (1.0–11.0)		<0.001
Clinical Psychology	1.7 (0.0–0.0)	0.2 (0.0–0.0)		<0.001

* p-values in bold are statistically significant at $p < 0.05$.

3.4. Factors associated with increased laser treatments

Once laser therapy was commenced, a patient was more likely to receive a greater number of laser sessions if they were younger ($p < 0.0001$), female ($p < 0.0001$), had a higher %TBSA ($p = 0.016$), multiple locations affected ($p = 0.007$), longer time to wound healing ($p < 0.0001$), and surgery ($p < 0.0001$) (Table 3). In addition, more lasers were associated with patients who had been treated as an inpatient for their acute burn ($p < 0.0001$), had Type 4 Medium brown skin ($p < 0.0001$), and had an accident at work ($p < 0.0001$). Less laser sessions were associated with buttock ($p = 0.007$), foot ($p = 0.018$), leg ($p = 0.025$) burns as well as rural ($p = 0.038$) and remote ($p < 0.0001$) living.

3.5. Timing of laser treatments

While most patients received their first laser treatment within 18 months or less of their injury (73 %) in comparison to more than 18 months after injury (27 %) though Fig. 2 demonstrates the progressive shortening of the time between burn and first laser treatment. In 2013, a patient in SABU the average age of the scar was 15 years old, while in 2017 it was 248 days, and then 111 days in 2024 (Fig. 2). Receiving laser within 18 months of injury, was associated with older age ($p < 0.001$), longer length of stay ($p < 0.001$), and presence of grafts ($p < 0.001$) (Table 4).

3.6. Number of laser treatments

Across the whole cohort, patients receiving AFCO₂L therapy underwent an average of 4.8 sessions (SD of 4.1) with the median number being 3.0 (IQR 2.0–6.0) (Fig. 3). The median number of lasers per patient by year of injury was variable over the study period, with a sharp decline since 2020 (Fig. 4). As expected, in all patients who received laser therapy, as %TBSA increased, the median number of treatments

Table 3
Multivariable model of factors associated with number of laser treatments.

Variable	Regression coefficient ^a	SE	p-value [*]	95 % CI
Age	-0.0085	0.001	<0.001	[-0.011, -0.006]
%TBSA burned	0.0166	0.006	0.016	[0.005, 0.028]
Comorbidities (Elixhauser score)	-0.0065	0.008	0.432	[-0.023, 0.01]
Number of surgeries	0.5188	0.033	<0.001	[0.454, 0.584]
Time to healing (Days)	0.0102	0.002	<0.001	[0.007, 0.014]
Female gender	0.5455	0.050	<0.001	[0.447, 0.644]
Skin type (Pale white)	0.0411	0.096	0.667	[-0.146, 0.228]
Skin type (Darker white / Light brown)	0.0447	0.066	0.500	[-0.085, 0.175]
Skin type (Medium brown)	0.2727	0.074	<0.001	[0.127, 0.418]
Skin type (Rich brown)	0.0846	0.102	0.405	[-0.114, 0.284]
Skin type (Very dark brown / black)	-0.0704	0.136	0.605	[-0.337, 0.197]
Accident (at work)	0.2924	0.054	<0.001	[0.187, 0.397]
Accident (not at work)	-0.0812	0.167	0.627	[-0.409, 0.247]
Accident (motor vehicle)	-0.0858	0.136	0.528	[-0.352, 0.181]
Accident (other)	0.0162	0.064	0.801	[-0.109, 0.142]
Non accident (assault)	0.1256	0.282	0.655	[-0.426, 0.677]
Non accident (self-harm)	-0.4803	0.25	0.055	[-0.97, 0.01]
Non accident (suicide)	-0.1422	0.533	0.789	[-1.186, 0.901]
Scar reconstruction	0.8982	1.062	0.398	[-1.184, 2.98]
Inpatient	0.3426	0.066	<0.001	[0.213, 0.472]
ICU admission	0.1675	0.158	0.290	[-0.142, 0.478]
Remote living	-0.3504	0.086	<0.001	[-0.52, -0.181]
Rural living	-0.152	0.062	0.038	[-0.274, -0.03]
Multiple locations affected	0.187	0.075	0.007	[0.04, 0.334]
Trunk burn	0.0836	0.071	0.239	[-0.056, 0.223]
Hand burn	-0.0942	0.058	0.105	[-0.208, 0.02]
Arm burn	-0.0181	0.064	0.777	[-0.143, 0.107]
Buttock burn	-0.2899	0.116	0.007	[-0.517, -0.063]
Foot burn	-0.1499	0.067	0.018	[-0.281, -0.019]
Leg burn	-0.1331	0.057	0.025	[-0.245, -0.021]
Head burn	0.081	0.074	0.274	[-0.064, 0.226]

^a Negative coefficients indicates association with a lesser number of laser treatments, and conversely, positive coefficients are associated with greater treatment count.

* p-values in bold are statistically significant at $p < 0.05$.

also increased (Fig. 5).

3.7. Multidisciplinary team impact

Resources required when assessing and treating patients with burn

injuries using laser versus no laser (standard care) showed higher resource utilization of all allied health groups (Table 2). The associated increased use of resources for those requiring laser therapy, was also reflected in the overall costings per case (Table 5). However, with the integration of the SABU AFCO2L service, the overall number of formal reconstructive surgeries decreased (Fig. 6).

4. Discussion

This study represents the largest cohort of individuals receiving laser therapy in Australia, and this study crystallized multiple data-driven and observational lessons learned over the twelve-year time frame. Currently, AFCO2L therapies are employed in nearly all burn centers in Australia and New Zealand indicating its acceptance, utility and perceived value by burns clinicians. Thus, we believe, this study achieved the aim to inform, and help, others establishing and growing their own laser service to treat scarring.

Equity of access to the confirmed benefits of AFCO2L treatment for burn scarring was improved markedly, by a shift from delivering laser primarily in theatre to provision of $\geq 80\%$ in the outpatient setting since 2017 and burgeoning numbers after the COVID pandemic (Fig. 1 and Supp Table A). Further, this study confirmed that delivering laser therapy was not impeded by the presence of comorbidities (Table 1). Secondly, this study showed that the benefits of laser therapy can be accessed much earlier in the scar maturation journey without an increase in adverse events, as supported by our two laser trials [3,4] and reducing median time between burn and first laser and number of lasers required (Figs. 2 and 4).

4.1. Evolution of SABU laser service

This study has shown that the SABU team streamlined outpatient laser processes over time, with most cases completed in the outpatient setting (66 %). Further, the study numbers showed that local laser can be completed safely and was tolerated well, with relative comfort while awake under the influence of oral analgesia and topical anesthetic cream. In 2025, our practice is to use a topical anesthetic (Lidocaine 2.5 % and Prilocaine 2.5 %) self-applied by the patient or carer, about one (1) hour before the local laser outpatient appointment. Operative laser cases are now prioritized for patients with large %TBSA (large laser treatment areas) or for very sensitive areas such as the face.

The shift to outpatient laser provision, has enabled the SABU team to offer a more patient-centric, five-day service delivering more patient choice, schedule flexibility, and increased the capacity, and efficiency, allowing prioritised access for more patients in the clinic-based morning or afternoon sessions, than could be achieved in an operative setting. Concurring with other reports, adverse events were rare despite a diverse cohort [16]. In that, the risks of general anesthetic are removed in the outpatient setting, allowing more elderly and medically comorbid patients to be treated safely. Anecdotally, by moving more laser treatments to the outpatient setting, we observed reduced pressure on SABU inpatient capabilities. By reducing the overall number of multiday reconstructive surgery cases each year (Fig. 6), elective and emergency surgical lists had more capacity. Additional positive effects of maximising the use of the outpatient setting, were that AFCO2L treatment was: more readily available as the SABU managed the bookings, resulting in shorter time on the waitlist in comparison to other scar reconstructions; did not require an anesthetist to be present; and, less likely to be rescheduled compared to when performed under a general anesthetic. While not the focus of this study, this is likely to lead to a reduction in costs to the service, the hospital, and the environment [17,18], and may also reduce the environmental impact of theater with fewer cases under anesthetic [19–22] as well as improving overall bed flow for the hospital.

SABU practice ethos has changed, with a low threshold to early identification of patients who may benefit from laser as we firmly

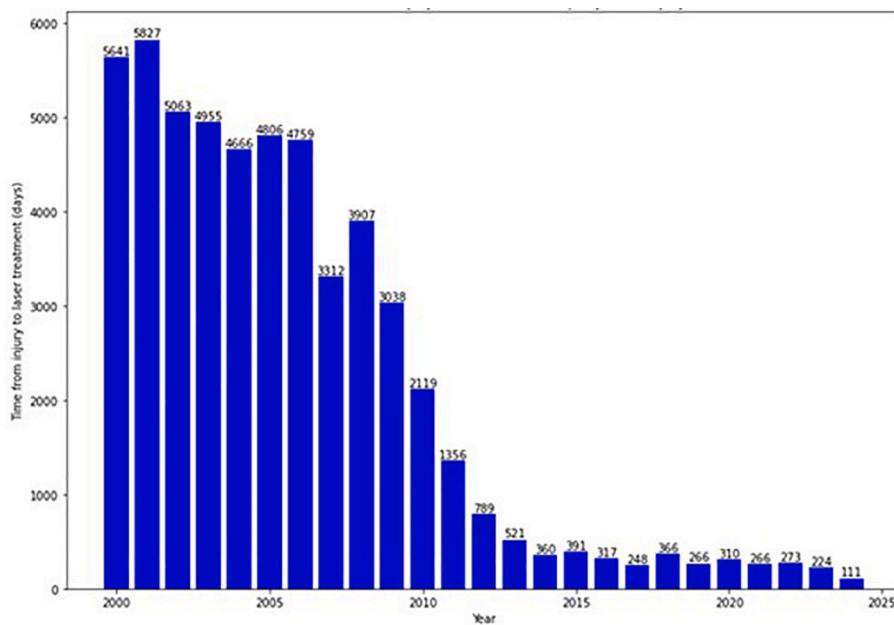


Fig. 2. Mean number of days between burn injury and first AFCO2L treatment, by year.

Table 4

Comparison of characteristics of those who received their first laser therapy treatment ≤ 18 months, or > 18 months after burn.

Variable (Median (IQR) unless otherwise stated)	≤ 18 months (n = 613)	> 18 months (n = 224)	p-value *
Gender: male [n(%)]	288 (47.0 %)	95 (42.4 %)	0.336
Age	34.0 (24.0–48.0)	20.0 (11.0–35.0)	<0.001
Comorbidities [n(%)]	496 (80.9 %)	194 (86.6 %)	0.104
No comorbidity	59 (9.6 %)	12 (5.4 %)	
One comorbidity	58 (9.5 %)	18 (8.0 %)	
Two or more comorbidities			
%TBSA burned	2.7 (0.9–9.6)	2.0 (1.0–8.3)	0.797
%TBSA full thickness	0.0 (0.0–0.0)	0.0 (0.0–0.3)	0.188
Length of hospital stay (days)	6.0 (1.0–14.0)	1.0 (1.0–8.0)	<0.001
Surgery events	1.0 (1.0–1.0)	0.0 (0.0–1.0)	<0.001
Intensive care unit admission [n(%)]	62 (10.1 %)	13 (5.8 %)	0.072
Mechanical ventilation [n (%)]	46 (7.5 %)	10 (4.5 %)	0.161
Time to healing (days)	21.0 (15.0–34.0)	27.5 (16.2–40.5)	0.050
Skin type [n(%)]	43 (7.0 %)	22 (9.8 %)	<0.001
Type 1	293 (47.8 %)	94 (42.0 %)	
Type 2	110 (17.9 %)	18 (8.0 %)	
Type 3	90 (14.7 %)	30 (13.4 %)	
Type 4	43 (7.0 %)	22 (9.8 %)	
Type 5	21 (3.4 %)	19 (8.5 %)	
Type 6	13 (2.1 %)	19 (8.5 %)	
Unrecorded			
Anatomic Area Burned [n (%)]	272 (44.4 %) 52 (8.5 %) Arm Buttock Foot Hand Head Leg Trunk Multiple locations	30 (13.4 %) 6 (2.7 %) 12 (5.4 %) 22 (9.8 %) 20 (8.9 %) 30 (13.4 %) 31 (13.8 %) 38 (17.0 %) 0.371 0.993 0.529 0.106 0.834 0.490 0.228 0.462	
Location patient living [n (%)]	456 (74.4 %) 43 (7.0 %) Metro Remote Rural Unrecorded	165 (73.7 %) 15 (6.7 %) 39 (17.4 %) 5 (2.2 %)	0.786

* p-values in bold are statistically significant at $p < 0.05$.

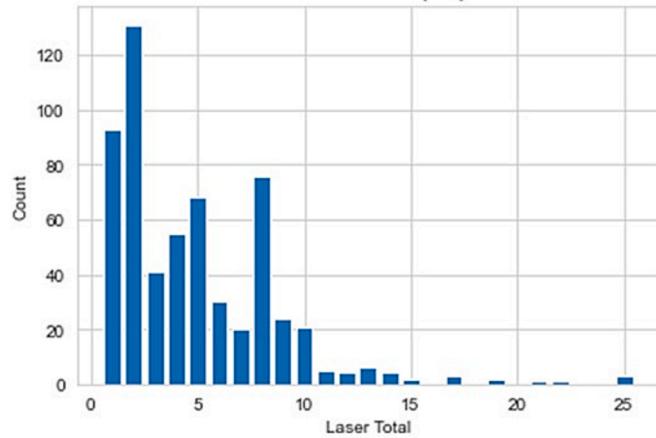


Fig. 3. Distribution of the count of AFCO2L sessions per patient.

believe they should be offered this therapy in the immature stages to improve their scars, and evidence is burgeoning to support this approach [4,23,24]. The value of allied health members of the MDT (such as OT, physios) cannot be underestimated in this process. It is our observation, that scars often worsen in the first six months post-injury and any scar which appears thick or vascular identified by any member of the team can be referred for laser in our practice. Given the improvements shown in scar symptoms [23] and outcomes [4,8] as well as quality of life [1], the earlier this is identified, the better so treatment can commence.

Whilst surgical reconstruction remains firmly in the SABU surgeon's armamentarium, operating early on burn scars can be challenging due to thick, stiff, and bleeding scar tissue. This study showed that laser can be used from an early point in the scar journey as neoadjuvant improvement prior to scar revision surgery (Fig. 2). In the example of the patient with sheets of skin graft over expansive burn areas, limited surgical options for effective release, or resurfacing, exist, particularly prior to maturation of the scar. Laser therapy represents a paradigm shift, providing options for early treatment, particularly for large surface areas of scar, and in this study was also shown to be used more often for scars on the trunk, arm and head (Table 1) but required higher numbers of laser sessions on legs and buttocks (Table 3).

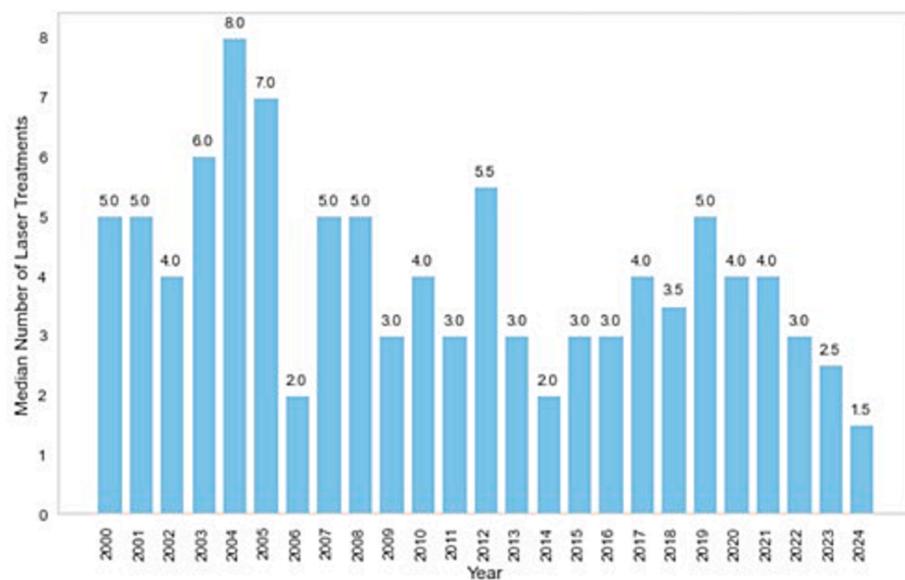


Fig. 4. Median number of laser treatments per patient by year since burn (NB reference year is year of injury).

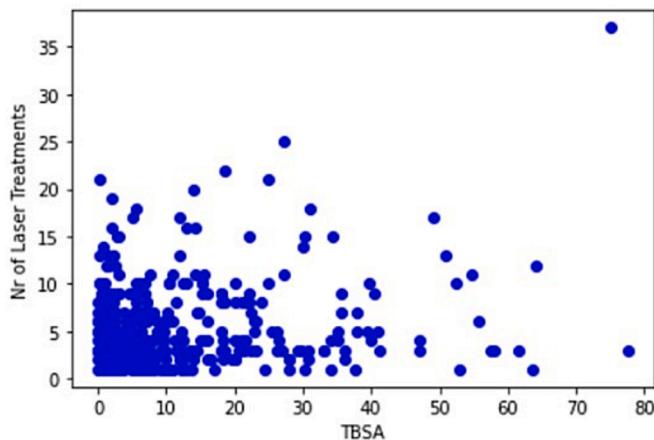


Fig. 5. Median number of laser treatments by percentage TBSA.

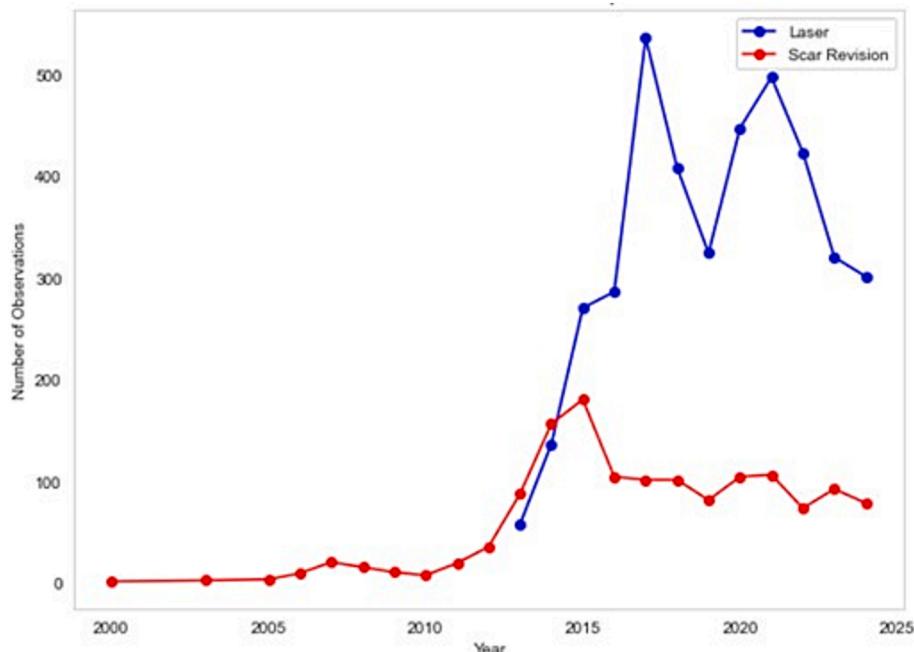
Table 5

Case costs (categorised) for burn patients who underwent AFCO₂L treatment, compared to all others who were treated by the SABU team (2013–2024).

Costings	No laser (n = 5351)	Laser (n = 837)	p-value *
Total costs	1156.0	23291.0	<0.001
[median (IQR)]	(578.0–3524.0)	(8955.5–54874.0)	<0.001
1. 0 AUD	15 (0.1 %)	1 (0.1 %)	
2. 1–1000 AUD	7302 (34.6 %)	19 (2.3 %)	
3. > 1000–5000 AUD	5447 (25.8 %)	94 (11.2 %)	
4. > 5000–10,000 AUD	928 (4.4 %)	94 (11.2 %)	
5. > 10,000–20,000 AUD	1062 (5.0 %)	142 (17.0 %)	
6. > 20,000–50,000 AUD	1181 (5.6 %)	192 (22.9 %)	
7. > 50,000–100,000 AUD	285 (1.4 %)	101 (12.1 %)	
8. > 100,000 AUD	127 (0.6 %)	108 (12.9 %)	
9. Unrecorded	4735 (22.5 %)	86 (10.3 %)	

* p-values in bold are statistically significant at p < 0.05.

4.2. Timing of laser


As such, the SABU service initiated laser therapy for older scars at establishment, and as the team learned more about the impacts and variations in prescription, they became more comfortable with lasering immature scars (Figs. 2 and 4). The compounding benefit of timely laser therapy was confirmed during the ELIPSE trial [4], whereby earlier laser improves overall scar outcome. Most past studies involved a minimum wait of 6 months after injury before beginning laser therapy [16]. However, in keeping with the ELIPSE trial [4] commencing laser therapy at three (3) months post-burn, some researchers have started as early as one month post-injury in pediatric [25] and surgery scar [24] cohorts.

4.3. Patient factors associated with laser

In this study, individuals receiving laser treatment were more likely: younger, female; have higher %TBSA; multiple anatomic areas; longer times to wound healing; and, require surgery (Table 1). This may represent worse scars as larger areas that require surgery will likely need skin grafts and leave permanent scarring. This was further reinforced as the group also required increased input from dietetics, occupational therapy, physiotherapy, and clinical psychology (Table 4). These results are not surprising as large injuries with poorer scars tend to receive more SABU MDT involvement [26]. Whether younger, female patients tend to seek or accept laser therapy more readily than other individuals is unknown and warrants further investigation. Once laser therapy has commenced, more lasers sessions were associated with those factors above as well as being an inpatient, having Type 4 medium brown skin, and an accident that occurred at work (Table 3). Little data is available regarding predictive data for AFCO₂L in the literature.

4.4. Cost impact and future studies

The aggregated case costs for those receiving laser therapy were generally higher than those who did not have the treatment (Table 5). However, the characteristics of both cohorts differed markedly, and a comprehensive economic analysis was out of scope for this study. Thus, future analyses are warranted to explore the nett cost implications and patient impacts since the instigation and establishment of the SABU AFCO₂L service. To be considered in the health economic analyses is the: fact that the establishment and expansion of the SABU AFCO₂L service has been achieved through reallocation, rather than expansion of staff

Fig. 6. Presentation of the counts of laser and surgical scar revision events by year of operation of the SABU Laser Service (NB the SABU moved to Fiona Stanley Hospital in 2015).

complement; significant and ongoing reduction of inpatient scar reconstruction procedures demonstrated since 2015 (Fig. 6); marked increase of primarily outpatient laser service events (Fig. 1); and, reducing total numbers of laser treatments delivered after the peak in 2021 (Fig. 1). Reducing operative time, in an Australian context, potentially saves an estimated average, gross cost of \$42/min or \$2500/hour [27]. This is a key factor in determining the past, and future cost and resource implications for the SABU service, and the tertiary hospital organization as a whole. Thus, this study warrants a future balanced assessment of the direct and indirect impact of acute practices and post-epithelialisation scar interventions, on overall duration and costs of care per patient or per percent of burn area.

5. Conclusion

The laser service in Western Australia has grown as a learning system over time and is now an integral and valued part of our standard of care for burn scar treatment. The study confirmed the strategies to enhance access to laser; provide regular, flexible treatment schedules; and, deliver MDT support are pillars of our scar care, and this has taken years to refine.

Funding Statement

This is an investigator initiated, unfunded study, other than Dr Spronk's involvement in the study, which was funded by the Dutch Burn Foundation.

Patient Consent

The patient information included in analyses for this study report was approved for presentation in aggregated, deidentified form, under waiver of consent provisions for the WA Burn Clinical Data Registry Program (Ethics approval RGS2233).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to acknowledge the contribution to this project, of Assoc Prof Mark Fear who is sadly no longer with us. Thank you also to Graeme McLeod, SABU Data Manager, for extracting the data from the Western Australian Burn Clinical Data Registry.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.burnso.2025.100435>.

References

- [1] Issler-Fisher AC, Fisher OM, Smialkowski AO, Li F, van Schalkwyk CP, Haertsch P, et al. Ablative fractional CO₂ laser for burn scar reconstruction: an extensive subjective and objective short-term outcome analysis of a prospective treatment cohort. *Burns* 2017;43(3):573–82.
- [2] Issler-Fisher AC, Waibel JS, Donelan MB. Laser Modulation of Hypertrophic Scars: Technique and Practice. *Clin Plast Surg* 2017;44(4):757–66.
- [3] Douglas H, Lynch J, Harms KA, Krop T, Kunath L, van Vreeswijk C, et al. Carbon dioxide laser treatment in burn-related scarring: a prospective randomised controlled trial. *J Plast Reconstr Aesthet Surg* 2019;72(6):863–70.
- [4] Lewis CJ, Douglas H, Martin L, Deng Z, Melton P, Fear MW, et al. Carbon dioxide laser treatment of burn-related scarring: results of the ELIPSE (Early Laser intervention Promotes Scar Evolution) prospective randomized controlled trial. *J Plast Reconstr Aesthet Surg* 2023;84:368–76.
- [5] Ross SW, Malcolm J, Maitz J, Li Z, Wang Y, Issler-Fisher AC. Fractional ablative laser therapy for the treatment of severe burn scars: a pilot study of the underlying mechanisms. *Burns* 2023;49(3):573–82.
- [6] Zuccaro J, Ziolkowski N, Fish J. A Systematic Review of the Effectiveness of Laser Therapy for Hypertrophic Burn Scars. *Clin Plast Surg* 2017;44(4):767–79.
- [7] Buhalog B, Moustafa F, Arkin L, Lee K, Siwy K, Donelan M, et al. Ablative fractional laser treatment of hypertrophic burn and traumatic scars: a systematic review of the literature. *Arch Dermatol Res* 2021;313(5):301–17.
- [8] Mahar PD, Spinks AB, Cleland H, Bekhor P, Waibel JS, Lo C, et al. Improvement of Burn Scars Treated with Fractional Ablative CO₂ Lasers-a Systematic Review and Meta-analysis using the Vancouver Scar Scale. *J Burn Care Res* 2021;42(2):200–6.
- [9] Fredriksson I, Hultman M, Stromberg T, Larsson M. Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry. *J Biomed Opt* 2019;24(1):1–11.
- [10] Ma Y, Barnes SP, Chen YY, Moiemen N, Lord JM, Sardelli AV. Influence of scar age, laser type and laser treatment intervals on paediatric burn scars: a systematic review and meta-analysis. *Burns Trauma* 2024;12:tkad046.

[11] Chen Y, Wei W, Li X. Clinical efficacy of CO₂ fractional laser in treating post-burn hypertrophic scars in children: a meta-analysis: CO₂ fractional laser in treating post-burn hypertrophic scars in children. *Skin Res Technol* 2024;30(2):e13605.

[12] Foppiani JA, Khaita A, Al-Dardery NM, Hasan MT, El-Samahy M, Lee D, et al. Laser Therapy in Hypertrophic and Keloid Scars: A Systematic Review and Network Meta-analysis. *Aesthetic Plast Surg* 2024;48(19):3988–4006.

[13] Hultman CS, Edkins RE, Cairns BA, Meyer AA. Logistics of building a laser practice for the treatment of hypertrophic burn scars. *Ann Plast Surg* 2013;70(5):581–6.

[14] Spronk I, van Uden D, Lansdorp CA, van Dammen L, van Gemert R, Visser I, et al. Development of a value-based healthcare burns core set for adult burn care. *Burns* 2024;50(7):1925–34.

[15] Gankande TU, Wood FM, Edgar DW, Duke JM, DeJong HM, Henderson AE, et al. A modified Vancouver Scar Scale linked with TBSA (mVSS-TBSA): Inter-rater reliability of an innovative burn scar assessment method. *Burns* 2013;39(6):1142–9.

[16] Choi KJ, Williams EA, Pham CH, Collier ZJ, Dang J, Yenikomshian HA, et al. Fractional CO₂ laser treatment for burn scar improvement: a systematic review and meta-analysis. *Burns* 2021;47(2):259–69.

[17] Sullivan GA, Petit HJ, Reiter AJ, Westrick JC, Hu A, Dunn JB, et al. Environmental Impact and cost Savings of Operating Room Quality Improvement Initiatives: a Scoping Review. *J Am Coll Surg* 2023;236(2):411–23.

[18] Lorenzon L, Magalini S, Antolino L, De Rubeis G, Ferri L, Galati C, et al. Impact of operating room waste in a high-volume institution and strategies for reduction: results from the CARING NATURE project. *Br J Surg* 2025;112(2).

[19] Slingo ME, Slingo JM. The Color of climate Change: Transparency over the Burden from Anesthesia. *Anesth Analg* 2024;138(6):1151–3.

[20] Slingo JM, Slingo ME. The science of climate change and the effect of anaesthetic gas emissions. *Anaesthesia* 2024;79(3):252–60.

[21] Slingo JM, Slingo ME. The science of climate change and the effect of anaesthetic gas emissions: a reply. *Anaesthesia* 2024;79(5):553–5.

[22] Sherman J, Le C, Lamers V, Eckelman M. Life cycle greenhouse gas emissions of anesthetic drugs. *Anesth Analg* 2012;114(5):1086–90.

[23] Slavinsky V, Wong JH, Carney BC, Lee DT, Alley R, Shupp JW, et al. Addressing Burn Hypertrophic Scar Symptoms Earlier: Laser Scar Revision May Begin as Early as 3–6 months after Injury. *Lasers Surg Med* 2024;56(7):632–41.

[24] Ji Q, Luo L, Ni J, Pu X, Qiu H, Wu D. Fractional CO₂ Laser to Treat Surgical Scars: a System Review and Meta-Analysis on Optimal timing. *J Cosmet Dermatol* 2025;24(1):e16708.

[25] Ghalambor AA, Pipelzadeh MH. Low level CO₂ laser therapy in burn scars: Which patients benefit most? *Pak J Med Sci* 2006;22(2):158–61.

[26] Evans CK, Hince DA, Tatlow CJ, Pienaar PC, Truter P, Wood FM, et al. Early ambulation impacts on quality-of-life outcomes positively after lower limb burn injury: a group trajectory analysis. *Burns* 2024;50(4):829–40.

[27] Mizumoto R, Cristaudo AT, Hendahewa R. A surgeon-led model to improve operating theatre change-over time and overall efficiency: a randomised controlled trial. *Int J Surg* 2016;30:83–9.